INORGANIC COMPOUNDS

Acta Cryst. (1998). C54, 1053-1055

The Layered Perovskite $\mathbf{K}_{2} \mathbf{N d}_{2} \mathbf{T i}_{3} \mathbf{O}_{\mathbf{1 0}}$

Gisele Amow and J. E. Greedan
Department of Chemistry, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada L8S 4K1. E-mail: greedan@mcmail.cis.mcmaster.ca

(Received 31 July 1997; accepted 3 February 1998)

Abstract

Single crystals of dipotassium dineodymium trititanium decaoxide, $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$, have been obtained by the flux growth method. The structure is of the RuddlesdenPopper type and can be described as being composed of blocks of triple perovskite layers separated by rock salt layers.

Comment

In general, there has been interest in members of the $A_{2} \mathrm{Ln}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ series of compounds, where $A=\mathrm{Na}, \mathrm{K}$ or Rb and $\mathrm{Ln}=$ rare earth ion. These compounds are known to exhibit ion exchange and intercalation reactions. In addition, they readily undergo protonation on treatment with dilute acids, making them potentially useful in catalysis and electrochemistry (Richard et al., 1994; Gondrand \& Joubert, 1987; Gopalakrishan \& Bhat, 1987).

To date, members of this series have only been isolated in the polycrystalline phase, with principal structural determinations carried out by the use of X-ray powder diffraction. Notably, for the case where $A=$ K and $\mathrm{Ln}=\mathrm{Nd}$, only the cell constants and space group have been reported (Richard et al., 1994). In this paper, we report the preparation of single crystals of $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$, and its structural determination by singlecrystal X-ray diffraction.
The structure is described as $14 / \mathrm{mmm}$, and the cell parameters obtained are in agreement with those reported for the polycrystalline phase (Richard et al., 1994). It is related to the Ruddlesden-Popper phases $A_{4} \mathrm{Ti}_{3} \mathrm{O}_{10}(A=\mathrm{Sr}, \mathrm{Ca})$, in that it is composed of triple blocks of corner-shared perovskite layers intergrown with individual rock salt layers (Ruddlesden \& Popper, 1958) (Fig. 1). There are two very interesting structural features present in $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$. First, we observe in Fig. 1 a marked anisotropy in the displacement parameters of all the O atoms. For Ol and O3, the ellipsoid principal axes are parallel to the c axis, while for O 2 , in particular, and O 4 , it lies in the $a b$ plane. In addition, the Ol site exhibits strong
disorder. Initially, O1 was assigned to the $4 c$ site, but an extremely high isotropic displacement parameter resulted. Consequently, this site was split by moving to the $8 j$ position. These features can be explained by noting that these atoms coordinate the Nd^{3+} ion, which is much smaller than the ions, such as Sr^{2+}, which normally occupy the perovskite A-site in the RuddlesdenPopper phases. In perovskite materials such as NdTiO_{3}, the Ti-O octahedra exhibit a coherent cooperative tilting to accommodate the smaller Nd^{3+} ion, lowering the symmetry from Pm3m to Pnma (Maclean et al., 1979). However, in the case of $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$, the requirement for intergrowth between the perovskite and rock salt layers with dissimilar cations may inhibit coherent cooperative tilting.

Fig. 1. View of the unit cell of $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ along [010], showing the local Ti2-O octahedron distortion. Displacement ellipsoids are plotted at the 50% probability level.

This case can be contrasted with the classic Ruddlesden-Popper phase $\mathrm{Sr}_{4} \mathrm{Ti}_{3} \mathrm{O}_{10}$, as well as with $\mathrm{Ca}_{4} \mathrm{Ti}_{3} \mathrm{O}_{10}$. For $\mathrm{Sr}_{4} \mathrm{Ti}_{3} \mathrm{O}_{10}$, the structure is tetragonal and described as $14 / \mathrm{mmm}$, representing the case where no octahedral tilting is observed. However, substitution of the smaller Ca^{2+} cation in both the perovskite and rock salt layers, as in $\mathrm{Ca}_{4} \mathrm{Ti}_{3} \mathrm{O}_{10}$, induces a cooperative
coherent tilting in the octahedral network, such that a lowering of symmetry to orthorhombic $P c a b$ is observed (Elcombe et al., 1991). An attempt was made to refine the data for $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ using this model, but this proved to be unsuccessful. The compound $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ thus appears to represent an intermediate case, where the octahedral tilting appears to be disordered or incoherent in nature, as shown by the strongly anisotropic O-atom displacement parameters, such that the $14 / \mathrm{mmm}$ symmetry is preserved.

The second remarkable feature is a local distortion in the $\mathrm{Ti} 2-\mathrm{O}$ octahedron, which is closest to the rock salt layer. The distortion arises when the Ti^{4+} cation is displaced from the centre of the coordination sphere towards the rock salt layer. Such distortions are not uncommon for Ti^{4+} compounds, e.g. BaTiO_{3}. A rationale for explaining such distortions is based on the nature of the bond network as well as on electronic effects (Kunz \& Brown, 1995). For our particular case, a bond valence analysis (Brown, 1992) of the ideal undistorted bond network was carried out, and it was found that the O 4 atom is severely underbonded, with only 1.22 valence units. Consequently, it is presumed that the T^{4+} cation moves off-centre in the coordination sphere to compensate for the deficiency of electronic charge at this site. The end result is a distorted octahedron with an unusually strong $\mathrm{Ti} 2-\mathrm{O} 4$ bond $[1.734(5) \AA$ A $]$ and a very weakened $\mathrm{Ti} 2-\mathrm{O} 2$ bond [2.291 (6) Å].

Experimental

Single crystals of $\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$ were obtained by the flux method, in which a potassium fluoride/sodium tetraborate flux was used. 0.989 g of prefired $\mathrm{Nd}_{2} \mathrm{O}_{3}$ (99.99% Rhone Poulenc), 1.124 g of TiO_{2} (99.999% CERAC), 8.711 g KF (99.999% CERAC) and $1.662 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ (99.99\% Fisher Scientific) were ground together in an inert atmosphere. The reagents were placed and sealed in a 20 ml platinum crucible. The growth conditions involved heating the crucible to 1373 K at $110 \mathrm{~K} \mathrm{~h}^{-1}$, holding it at this temperature for 2 h , and then cooling to 1273 K at a rate of $1 \mathrm{~K} \mathrm{~h}^{-1}$. On reaching 1273 K , the crucible was quenched, hot poured and allowed to cool to room temperature. The crystals were obtained as transparent light purple blocks varying from 0.25 to $0.75 \mathrm{~mm}^{2}$ in area, each consisting of very thin plates several microns thick. The presence of the metal ions was confirmed by EDAX.

Crystal data

$\mathrm{K}_{2} \mathrm{Nd}_{2} \mathrm{Ti}_{3} \mathrm{O}_{10}$
$M_{r}=670.38$
Tetragonal
I4/mmm
$a=3.8588$ (1) \AA
$c=29.6561(7) \AA$
$V=441.59(2) \AA^{3}$
$Z=2$
$D_{x}=5.042 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 4039
reflections
$\theta=5.67-38.57^{\circ}$
$\mu=15.129 \mathrm{~mm}^{-1}$
$T=300$ (2) K
Thin plate
$0.356 \times 0.194 \times 0.006 \mathrm{~mm}$
Colourless

Data collection

Siemens P4 diffractometer
with a Siemens SMART
1 K CCD area detector
Area detector scans
Absorption correction:
analytical (Sheldrick,
1996)
$T_{\text {min }}=0.114, T_{\text {max }}=0.912$
4977 measured reflections

437 independent reflections
416 reflections with
$I>-3 \sigma(I)$
$R_{\mathrm{int}}=0.072$
$\theta_{\text {max }}=38.57^{\circ}$
$h=0 \rightarrow 4$
$k=0 \rightarrow 6$
$l=0 \rightarrow 51$
Intensity decay: none

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$u \cdot R\left(F^{2}\right)=0.067$
$S=1.129$
436 reflections
26 parameters
$u=1 /\left[\sigma^{2}\left(F_{\%}^{2}\right)+(0.0315 P)^{2}\right.$
$\Delta \rho_{\text {ma }}=1.883 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.801 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from
International Tables for
Cnistallography (Vol. C)
$+4.0449 P$]
where $P=\left(F_{i}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{t} \Sigma_{j} U^{\prime \prime} a^{\prime} a^{\prime} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.				
	x	\cdots	z	$U_{\text {eq }}$
NdI	1/2	$1 / 2$	0.07246 (1)	0.00971 (10)
Til	0	0	0	0.0054 (2)
Ti2	0	0	0.14066 (3)	0.0059 (2)
K1	1/2	1/2	0.208 .32 (6)	0.0169 (3)
Olt \dagger	1/2	$0.111(2)$	0	0.0 .30 (2)
O 2	0	0	$0.0634(2)$	0.051 (3)
03	0	1/2	0.1269 (2)	0.0176 (7)
O4	0	0	0.1991 (2)	0.0202(11)

\dagger Site occupancy $=0.5$.
The results reported are those for which the Ol atom has been split, with 0.5 occupancy on each site. In addition, the residual electron density $\Delta \rho$ of $1.883 \mathrm{e}^{\AA^{-3}}$ is closest to Nd 1 at a distance of $0.66 \AA$.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL93 (Sheldrick. 1993a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993b). Molecular graphics: $X P$ in SHELXL93. Software used to prepare material for publication: SHELXL93.

The authors express gratitude to Drs I. D. Brown, H. Dabkowska and J. Britten, and to the National Science and Engineering Research Council (NSERC), Canada.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1188). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. (1992). Acta Crist. B48, 553-572.
Elcombe, L. L., Kisi, E. H.. Hawkins, K. D.. White, T. J., Goodman, P. \& Matheson. S. (1991). Acta Crist. B47, 305-314.

Gondrand, M. \& Joubert. J. C. (1987). Rev. Chim. Miner. 24, 33-41.
Gopalakrishan. J. \& Bhat. V. (1987). Inorg. Chem. 26. 4299-4301.

Kunz, M. \& Brown, I. D. (1995). J. Solid State Chem. 115, 395-406.
Maclean, D. A., Ng, H. N. \& Greedan, J. E. (1979). J. Solid State Chem. 30, 35-44.
Richard, M., Brohan, L. \& Tournoux, M. (1994). J. Solid State Chem. 112, 345-354.
Ruddlesden, S. N. \& Popper, P. (1958). Acta Cryst. 11, 54-55.
Sheldrick, G. M. (1993a). SHELXTL93. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993b). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. Siemens Area Detector Absorption Correction Software. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Release 4.05. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1055-1057

$\mathbf{N a}_{3} \mathbf{M n}_{4} \mathbf{T e}_{2} \mathbf{O}_{\mathbf{1 2}}$

Christopher R. Feger and Joseph W. Kolis
Department of Chemistry, Clemson University, Clemson, SC 29634, USA. E-mail: kjoseph@clemson.edu

(Received 15 August 1997; accepted 22 December 1997)

Abstract

The title compound, sodium manganese tellurate, was obtained by hydrothermal synthesis and adopts a superstructure related to the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ structure type, with the Mn and Te atoms ordered along the b axis (short axis in the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ structure). Electron-counting schemes show that this compound is a mixed-valence $\mathrm{Mn}^{11} / \mathrm{Mn}^{111}$ compound, and bond valence sums are used to suggest that there is no site preference for the higher charged

 Mn atom.
Comment

There are a variety of $A B_{2} X_{4}$ compounds that adopt the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ structure type (Decker \& Kasper, 1957). Some typical metal oxides include $\mathrm{CaCr}_{2} \mathrm{O}_{4}$ (Hörkner \& Müller-Buschbaum, 1976), $\mathrm{CaV}_{2} \mathrm{O}_{4}$ (Bertaut et al., 1955) and $\mathrm{NaTi}_{2} \mathrm{O}_{4}$ (Akimoto \& Takei, 1989). Many rare earth sulfides, such as $\mathrm{BaSm}_{2} \mathrm{~S}_{4}$ (Carpenter \& Hwu, 1992), also crystallize with this structure type. There are also several cases where the B site is populated by several types of atoms, most notably in NaScMO_{4} ($M=$ $\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{Sn}$) (Reid et al., 1968). In these compounds, there is a random distribution of Sc atoms and the tetravalent metal in the B sites. Upon determination of the structure of $\mathrm{Na}_{3} \mathrm{Mn}_{4} \mathrm{Te}_{2} \mathrm{O}_{12}$, we have found, to the best of our knowledge, the first compound that adopts a superstructure of the $\mathrm{CaFe}_{2} \mathrm{O}_{4}$ structure type, with the
unit cell tripled as a result of the ordering of the Mn and Te atoms along the b axis. Columns are made up of repeating groups of edge-sharing octahedra along the b axis. These columns have a repeat sequence of $\mathrm{MnO}_{6}-$ $\mathrm{TeO}_{6}-\mathrm{MnO}_{6}$, and are linked to one another through shared vertices, forming channels that contain the Na atoms. A typical repeating group is shown in Fig. 1, and a polyhedral view of the unit cell of the title compound is shown in Fig. 2.

Fig. 1. The repeat sequence of edge-sharing octahedra.

Fig. 2. Polyhedral representation of $\mathrm{Na}_{3} \mathrm{Mn}_{4} \mathrm{Te}_{2} \mathrm{O}_{12}$ viewed down the b axis. MnO_{6} octahedra are dashed and TeO_{6} octahedra are blank. The isolated spheres are Na atoms. The edge-sharing pairs of octahedra at the origin and center of the unit cell contain the $\mathrm{Mn}(2)$ and $\mathrm{Te}(2)$ atoms. The pairs that contain the $\mathrm{Mn}(1)$ and $\mathrm{Te}(1)$ atoms are located at $\left(0 . y, \frac{1}{2}\right)$ and ($\left.\frac{1}{2}, \because 0\right)$.

